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Abstract 
Graph-based design languages are presented as a method to encode and automate the complete design 
process and the final optimization of the product or complex system. The Unified Modeling Language 
(UML) is used to represent the design language which models the design process. A design language 
consists of a vocabulary (i.e. the digital building blocks) and a set of rules (i.e. the digital composition 
knowledge) along with an executable sequence of the rules (i.e. the incremental digital encoding of the 
design process). The rule-based mechanism instantiates a central and consistent global product data struc-
ture (the so-called design graph). Upon the incremental generation of the abstract central model, the do-
main-specific engineering models are automatically generated, remotely executed and their results are 
fed-back into the central design model for subsequent design decisions or optimizations. The design lan-
guages are manually modeled and automatically executed in a so-called design compiler. Up to now, a 
variety of product designs in the areas of aerospace (satellites, aircraft), automotive (space frame struc-
tures, automotive cockpits), machinery (robots, digital factory) and consumer products (coffeemakers, 
exhaust systems) have been successfully accelerated and automated using graph-based design languages. 
Different design strategies and mechanisms have been identified and applied in the automation of the 
design processes. Approaches ranging from the automated and declarative processing of constraints, 
through fractal nested design patterns, to mathematical dimension-based derivation of the sequence of 
design actions, are used. The existing knowledge for a design determines the global design strategy (i.e. 
top-down vs. bottom-up). Similarity-mechanics in the form of dimensionless invariants are used for eval-
uation to downsize the solution for an overall complexity reduction. Design patterns, design paradigms 
(i.e. form follows function, or function follows form) and design strategies (divide and conquer) from 
information science are heavily used to structure, manage and handle the design complexity. 
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Introduction 
The digitization of industrial processes, e.g. in the context of Industry 4.0, makes new design 

processes possible and necessary. The automation of the product development process promises a 
considerable increase in efficiency. Especially designs and decisions of the very early concept phase 
have a very large influence on the later life cycle costs of the product [1]. The development of mod-
ern and more competitive products requires to go even closer to the limits of what is physically fea-
sible in order, for example, to squeeze the last bit of weight advantage or efficiency out of a product 
or system. Modern products are integrating typically multiple physical domains (mechanics, ther-
modynamics, electronics, logistics, …) as well as a lot of system levels consisting of sub-systems or 
parts that mutually build on each other. The combination of both, multiple domains together with a 
number of system entities, results in a high level of design and process complexity that has to be 
handled. Digitized design processes can be used to cope with this complexity and to find more op-
timal product designs in even earlier project phases. This digitization mainly comprises the comput-

1 The article is published in expanded content on the recommendation of the Program Committee of the XX International Conference 
"Complex Systems: Control and Modeling Problems" (CSCMP-2018). Samara, Russia. September 3-6, 2018. 
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er-aided synthesis of designs (CAD) including the automated generation of functional validation 
calculations and simulations (structural mechanics, fluid mechanics, controls...). In fact, a virtual 
product design shall be automatically generated and optimized based on given product requirements 
to optimally meet the performance targets. 

In this paper graph-based design languages are presented as a method to implement such digital 
and re-executable representations of (conceptual) design actions. At first, the method of graph-
based design languages itself is explained. The method is proven for more than fifteen years and has 
been mainly developed in the Similarity Mechanics Group of the Institute for Statics and Dynamics, 
which moved now to the Institute of Aircraft Design at the University of Stuttgart. Second, scien-
tific applications are shown as well as an early industrial stage application. Finally, a collection of 
design principles to handle the complexity in product design is presented that has been identified in 
the scientific work with design languages over the past years. 

1 Method 
The method of graph-based design languages [2] is a further evolution step of generative, com-

puter-based design synthesis methods [3]. These design synthesis methods can be divided in to 
string-based, shape-based and graph-based design representations. From the viewpoint of the au-
thors, graph-based design languages belong to the most generic and abstract means of knowledge 
representation across different domains due to its graph representation. Alternative computer-based 
synthesis methods such as L-Systems or Shape Grammars [3] define a rule set on elementary shapes 
(vocabulary) which is recursively called in a production system to generate more complex shapes. 
Graph-based design languages expand this concept by generalizing the vocabulary to conceptual 
objects together with an adaptive procedural rule sequence, the so-called production sequence. 
Along with these approaches, there are other solutions in formalizing the process of designing and 
creating automatic design systems based on formal knowledge worth noting [4-9]. 

1.1 Philosophical Motivation 
Rudolph gives a philosophical motivation for the design language concept in [10]. First it is ob-

served that during the product design process different areas of concept, each with different levels 
of knowledge, are traversed. It is distinguished between the first area called ‘believe’ which covers 
uncertain design targets as simplicity, aesthetics or adequacy. The second concept is ‘ability’ which 
covers more concrete but still not exact formulated design aspects as Design for Manufacturing, 
Design for Assembly, Design for Recycling. The third concept covers exact aspects and is called 
‘knowledge’. It contains physical formulas and other reproducible, mathematically formalizable and 
provable laws and know-how. Figure 1 shows a schematic design process starting from an idea that 
is hosted in the concept of ‘believe’. During the iterative design process different solution concepts 
are derived from the given idea and product embodiments are synthesized as product variants. The-
se variants are validated towards specified requirements. The iterative procedure is conducted until 
a variant meets the requirements and becomes the final product, see Figure 1. 

In order to formalize and digitalize this design process all three aspects have to be represented 
in a single, unified description. Rudolph proposes a language-based representation that is closely 
related to natural languages which are a convenient candidate as they are able to cover all three 
conceptual areas presented above. This language-based representation is called a graph-based de-
sign language. The linguistic aspects of natural languages are reinterpreted here in the engineering 
application in the following way [2]. 
 Syntax of the design language:  

All designs that can be combinatorically represented by the classes in the class diagram. 
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1.2.2 Class Diagram (Vocabulary) 
The class diagram represents an ontology of the product that is to be designed. The product is 

decomposed in to its subsystems, components and even more granular entities that are assigned to 
classes. These classes are enriched with parameters that represent e.g. physical or cost variables. In 
this way, parametrized objects that are instantiated from classes form the vocabulary of a graph-
based design language instead of words in natural languages. A class diagram is shown in figure 2 
top for an exhaust aftertreatment system that reduces pollutants from a combustion engine’s ex-
haust. The class Catalyst is a kind of ExhaustSystem through inheritance. Within the class diagram, 
associations can be drawn as links between classes to represent relationships between them. In the 
example in figure 2 top, the ExhaustSystem is connected to a CombustionEngine whose exhaust has 
to be cleaned and the ExhaustSystem itself is connected with the Environment, where the cleaned 
exhaust gas escapes to. This associations define which elements can be linked during an instantia-
tion. Thereby the class diagram represents the (maximal combinatorial) template of the product that 
hosts all the information needed during the design process. Inheritance relationships can be defined 
between the classes, as is customary in object-oriented modeling. Abstract classes can be defined 
that cannot be instantiated. So components and entities can be mapped directly on classes on differ-
ent levels of abstraction and detail. 

Equations and constraints between the class parameters can be additionally modeled in the 
classes and are processed in an integrated solution path generator [14]. The equation and constraint 
network that is built on the instantiation of the classes is automatically solved in the solution path 
generator with an integrated computer algebra system. In the UML class definition physical dimen-
sions can be assigned as data types to class parameters. This becomes especially important for the 
dimension analysis presented in the design principles section below. 

1.2.3 Instance Diagram (Design Graph) 
The classes from the class diagram can be instantiated into instances. The instantiated objects 

get an unambiguous name and the parameters defined in the class are provided with concrete val-
ues. The instances of associated classes can be linked with each other. The set of linked instances is 
called design graph in the context of graph-based design languages (figure 2 bottom). The instanti-
ated objects form the nodes and the links form the edges of the graph. The specific values are stored 
in the parameters within each node. Thus, the topology of a product (an alternative name would be 
product architecture) can be mapped via the graph and the parametric of a product via the parame-
terization in the nodes. This design graph plays the role of the central data model in the virtual 
product design with design languages. 

1.2.4 Rules (Grammar) 
The engineering entities of the class diagram are rule-based instantiated into objects with spe-

cific parameter values. Graphical rules with a left-hand side (LHS) and a right-hand side (RHS) 
define the instantiation as manipulation on the instance diagram. Again, the design instances in the 
design graph are linked with each other according to the associations that are defined in the class 
diagram. This associations define the possible connection of instances, also called instance patterns, 
in the graphical rules. The instance pattern on the LHS of the graphical rule is looked-up in the de-
sign graph and replaced with the instance pattern on the RHS. The first rule is called ‘axiom’ and 
has an empty LHS as the design graph is empty in the beginning. The figure 2 center left shows the 
axiom rule that introduces the boundary conditions of an exhaust aftertreatment system, which 
comprises of a given combustion engine with its specific parameters (not all shown), the environ-
ment and the installation space as STEP geometry file that defines the available space for engineer-
ing the exhaust system. In the ‘axiom’ typically the requirements and given boundary conditions are 
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2 Applications 
A broad range of products has been designed using graph-based design languages. From appli-

cations in aerospace [15, 16] through consumer products [17] and off-road machinery components 
[18] up to automotive [19], the method has been successfully applied mainly in a scientific context. 
The scope of design languages has been prototypically extended up to downstream stages of the 
life-cycle by generating and designing the digital factory for a product in addition to the product 
itself [20]. Additional work has been done in the implementation of algorithms to automate engi-
neering tasks as routing of cables and wires [16] and the automated creation of pipework in given 
installation spaces [21]. These intelligent wiring and piping algorithms become necessary as graph-
based design languages fully automate the design process and therefore need to be able to create an 
intelligent integration and interaction of system components in given installation spaces for differ-
ent product architectures. 

2.1 Aeronautics: Air Cabin Design 
Figure 5 shows results of a graph-based design language that automates the layout design of an 

aircraft cabin [22, 16]. Beginning with the requirements, the designer can (manually) define the 
seating requirements based on a number of ratios. A ratio might define how many passengers share 
the same lavatory in a certain class. The aircraft main dimensions are as well given as a require-
ment. The proposed seating configuration within the aircraft’s hull can be additionally manually 
edited in a graphical editor that appears during the execution of the design language. The subse-
quent design process is schematically shown in figure 5. At first, an initial CAD model of the air-
craft cabin is created (figure 5 top left) based on the previously found or manually edited seating 
configuration. From this CAD model the available routing space for cable routing is rule-based ex-
tracted. Due to the previous automated CAD model generation, the information of the position, size 
and shape of the area, which is accessible for routing, is explicitly available in the central data mod-
el (figure 5 top mid). In the following step the equipment boxes are positioned in the available rout-
ing space. This is done via a parametrization along the aircrafts main dimensions which can be later 
varied in an optimization run (figure 5 top right). Afterwards, the equipment boxes are subtracted 
from the routing space and the remaining space is meshed for conducting collision detections for 
the subsequent cable routing (figure 5 left bottom). Then the search algorithm, a modified A*-
algorithm which is available as engineering plugin in the design compiler, is executed to identify 
the cable routes within the routing space (figure 5 mid bottom). Finally, collision-free CAD models 
of the cables are created which are used for an evaluation of the aircraft cabin configuration. Evalu-
ation metrics comprise of cable length and weight as well as electromagnetic compatibility. Addi-
tional constraints in the aircraft cable design, as minimum distances between the cables of redun-
dant systems, can also be taken into account by the design compiler’s integrated routing functionali-
ty. 

Using the graph-based design language reduces the time needed for an aircraft cabin layout 
from many weeks and months to a few hours. The complexity of the interaction of the coupled sys-
tems and components is handled through the interplay of the production system and the design rules 
together with the intelligent algorithms to solve the integration tasks of positioning and wiring the 
electrical components. Different aircraft cabin designs can thus be automatically evaluated and op-
timized in terms of total weight, cable length and wiring compatibility and validity [22]. Figure 6 
shows a final cable routing together with the comparison of the results of two cabling variants with 
a different number of distribution boxes (SPDB). The diagrams on the right are showing the differ-
ent resulting cable weights for the different networks and subsystems. 
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4 Discussion 
In this paper an overview on graph-based design languages was given. The method allows a 

graphical programming of design processes that helps to manage the complexity in modern product 
design. The data model is separated from the operational procedural aspects in an object-oriented 
way. The object-oriented UML modeling language is used for an open, re-useable, compact and 
non-proprietary knowledge representation of the product entities and design process. Modeling re-
dundancy is avoided through inheritance between classes and decomposition into classes, modules 
and plugins. Storing engineering knowledge in incremental rules and adaptive rule sequences al-
lows a hierarchical decomposition of the engineering process itself into smaller chunks that can be 
more easily captured and overviewed by the engineer even for complex products and systems. This 
approach allows an easy reuse of knowledge in further design languages as external classes and 
packages can be easily loaded. The design languages are preferably used to automate recurring de-
sign tasks as the implementation of a design language in the design compiler takes some upfront 
effort. 

The presented example applications show that the method of graph-based design languages is 
able to solve substantial real-world engineering problems in a fraction of the time that would be 
necessary in manual engineering. In fact, the design time collapses to the addition of the (potentially 
concurrent) run-times of the algorithms which is close to the lower theoretical limit. Furthermore, it 
is our observation that a graph-based design language, when embedded in an optimization frame-
work, is often able to find more optimal engineering solutions as can be found in a conventional 
manual engineering process. The presented language is able to capture engineering knowledge digi-
tally which leads to a highly scalable and re-executable digital blueprint of recurring design tasks. 
When executing design languages in optimization or DoE runs on HPC or cloud infrastructure, the 
available hardware power becomes the only limiting factor in accelerating the design tasks. The 
practical execution of optimizations with design languages on HPC environments shows that new 
challenges and questions arise from the resulting flood of results: How are result outliers to be treat-
ed and how are they caused? How can structures in the results be interpreted? Are these structures 
caused by properties of the design language or by the physics of the problem? Can generally valid 
technological laws be derived from this? Nevertheless, a significant upfront invest is necessary as 
implementing a product’s generic design process is apparently more expensive than creating a few 
product designs by hand. The wide acceptance of this kind of modeling method in industry is at the 
moment therefore still often hindered by the traditional ‘silo mentality’ present in today’s compa-
nies which look on the short-term profitability of the individual business unit instead on the mid- or 
long-term profitability of the company overall. 

The presented design principles provide various patterns, templates and aids to handle the oc-
curring complexity in product design. They can be used on different levels and stages during the 
implementation of engineering processes. Some of the shown principles as the design approaches, 
generic design patterns and the dimension-based design sequence help to understand the process of 
designing itself to simplify the implementation of design languages. Others, as the declarative con-
straint processing and the dimensionless evaluation scheme support an unambiguous evaluation of 
products which is a prerequisite for an unbiased optimization of the product itself. At last, design 
patterns from software engineering can be reused in design languages due to the close relation of 
the design languages and the design compiler with tools from object-oriented software engineering. 
All the shown design principles help to handle the complexity in product design. This is an im-
portant task as the complexity of the products themselves is steadily increasing and even more do-
mains and disciplines have to be considered to get a holistic evaluation, validation and optimization 
of a product’s life cycle from cradle to grave. In this sense, graph-based design languages have 
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shown to be a successful method to push the limits of the still controllable complexity in industrial 
engineering further away. 
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